
ORNL/TM-2002/145

Moving the
Hazard Prediction and Assessment Capability

to a
Distributed, Portable Architecture

31 August 2002

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. De-
partment of Energy (DOE) Information Bridge.

Web site http:/www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public
from the following source.

National Technical Information Service
5825 Port Royal Road
Springfield, VA 22161
Telephone 703-605-6000 (1-800-553-6847)
TDD 703-487-4639
Fax 703-605-6900
E-mail info@ntis.fedworld.gov
Web site http:/www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data
Exchange (ETDE) representatives, and International Nuclear Information System (INIS)
representatives from the following source.

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831
Telephone 865-576-8401
Fax 865-576-5728
E-mail reports@adonis.osti.gov
Web site http:/www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any in-
formation, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily consti-
tute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or re-
flect those of the United States Government or any agency thereof.

ORNL/TM-2002/145

Computational Sciences and Engineering Division

Moving the
Hazard Prediction and Assessment Capability

to a
Distributed, Portable Architecture

Ronald W. Lee

31 August 2002

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831-6285
managed by

UT-BATTELLE, LLC
for the

U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

CONTENTS

LIST OF FIGURES iv

LIST OF ABBREVIATED TERMS v

ABSTRACT 1

1 INTRODUCTION 1
1.1 PORTABILITY . 2
1.2 EXTENSIBILITY . 2
1.3 DEPLOYMENT FLEXIBILITY . 2
1.4 CLIENT-SERVER OPERATION . 3
1.5 INTEGRATION . 3
1.6 MAP-BASED INTERACTION . 3
1.7 MOTIVATION . 3

2 HPAC OVERVIEW 4

3 NEW HPAC ARCHITECTURE 4
3.1 RICH GUI OR WEB APPLICATION . 5
3.2 PORTABILITY . 6

3.2.1 Java . 7
3.2.2 No Native Code on the Client . 8

3.3 EXTENSIBILITY . 8
3.3.1 Dynamic Binding . 8
3.3.2 Design by Interface . 9
3.3.3 Serialization via Java Properties . 14
3.3.4 Jar Tiers and the Development Process . 17

3.4 DEPLOYMENT FLEXIBILITY . 17
3.4.1 URLs for File Reference . 17
3.4.2 Runtime Configuration . 18

3.5 CLIENT SERVER OPERATION . 18
3.5.1 Choices for the Distributed Object Mechanism 18
3.5.2 Server Architecture Elements . 20
3.5.3 File References . 22
3.5.4 Supporting Standalone Deployment . 24
3.5.5 Supporting Thin Client Deployment . 25

3.6 INTEGRATION . 25
3.6.1 HPACtool Library . 25
3.6.2 Detailed CORBA Services . 26
3.6.3 IHPACServer . 27
3.6.4 Reusable Java Components . 27

4 SUMMARY 27

iii

LIST OF FIGURES

1 Transition from the old to the new architecture. 5
2 New HPAC client GUI. 6
3 IncidentModelServer framework. 10
4 Model server collaboration. 11
5 IncidentModel bean framework. 12
6 Map display framework. 13
7 Properties serialization framework. 15
8 Factory pattern collaborations. 20
9 Levels of HPAC access. 26

iv

LIST OF ABBREVIATED TERMS

API application programming interface
ASCII American Standard Code for Information Interchange
CADRG Compressed Arc Digitized Raster Graphics
CGI Common Gateway Interface
CIB Controlled Image Base
COM/DCOM Component Object Model/Distributed Component Object Model
CORBA Common Object Request Broker Architecture
DLL dynamic link library
DOD Department of Defense
DTRA Defense Threat Reduction Agency
EJB Enterprise JavaBeans
FTP File Transfer Protocol
GIS geographic information system
GUI graphical user interface
HLA High Level Architecture
HPAC Hazard Prediction and Assessment Capability
HTML Hypertext Markup Language
HTTP Hypertext Transport Protocol
IDL Interface Definition Language
IIOP Internet Inter-Orb Protocol
ITPTS Integrated Target Planning Toolset
J2EE Java 2 Enterprise Edition
J2SE Java 2 Standard Edition
JNDI Java Naming and Directory Interface
JNLP Java Network Launching Protocol
JVM Java Virtual Machine
MFC Microsoft Foundation Classes
NIMA National Imagery and Mapping Agency
ORB object request broker
RMI [Java] Remote Method Invocation
SCIPUFF Second-order Closure Integrated Puff Model
SOAP Simple Object Access Protocol
T&D transport and dispersion
TCP/IP Transmission Control Protocol/Internet Protocol
UDDI Universal Description Discovery and Integration
URL Universal Resource Locator
VM virtual machine
XML Extensible Markup Language
WSDL Web Services Description Language

v

ABSTRACT

The Hazard Prediction and Assessment Capability (HPAC) has been re-engineered from a
Windows application with tight binding between computation and a graphical user interface
(GUI) to a new distributed object architecture. The key goals of this new architecture are plat-
form portability, extensibility, deployment flexibility, client-server operations, easy integration
with other systems, and support for a new map-based GUI. Selection of Java as the development
and runtime environment is the major factor in achieving each of the goals, platform portabil-
ity in particular. Portability is further enforced by allowing only Java components in the client.
Extensibility is achieved via Java’s dynamic binding and class loading capabilities and a design
by interface approach. HPAC supports deployment on a standalone host, as a heavy client in
client-server mode with data stored on the client but calculations performed on the server host,
and as a thin client with data and calculations on the server host. The principle architectural el-
ement supporting deployment flexibility is the use of Universal Resource Locators (URLs) for all
file references. Java WebStart™ is used for thin client deployment. Although there were many
choices for the object distribution mechanism, the Common Object Request Broker Architecture
(CORBA) was chosen to support HPAC client server operation. HPAC complies with version 2.0
of the CORBA standard and does not assume support for pass-by-value method arguments. Exe-
cution in standalone mode is expedited by having most server objects run in the same process as
client objects, thereby bypassing CORBA object transport. HPAC provides four levels for access
by other tools and systems, starting with a Windows library providing transport and dispersion
(T&D) calculations and output generation, detailed and more abstract sets of CORBA services,
and reusable Java components.

1 INTRODUCTION

HPAC is a Defense Threat Reduction Agency (DTRA) tool for calculating atmospheric trans-
port and dispersion of materials and assessing collateral effects. With hundreds of registered
users, it is deployed in many military headquarters and field units as well as in civilian emer-
gency response organizations. HPAC was originally developed as a standalone Windows appli-
cation with a tight coupling between the user interface and the calculation engine. Understand-
ably, the early stages of HPAC development were focused on scientific methodologies and correct
results. Nonetheless, a demand for HPAC on other platforms and the need to integrate HPAC
with many other tools and systems called for a new architecture. Consequently, HPAC has been
re-engineered to a client-server, distributed object architecture readily portable to other platforms.
Driving a new HPAC architecture are several system level requirements, including:

• portability to execute the user interface on virtually any desktop platform and perform cal-
culations on server platforms,

• extensibility to allow addition of new capabilities to a deployed system,
• deployment flexibility for a range of situations and environments,
• support for client-server operation to leverage high performance server systems, and
• expedited integration of HPAC components in other systems.

Functional requirements call for “map-based” user interaction, which is also addressed in the
new architecture.

1

1.1 PORTABILITY

With many HPAC user organizations representing a range of hardware and operating sys-
tems, portability has long been a goal for HPAC. Significant past efforts have attempted to solve
this problem in a couple of ways. First was use of a cross platform development environment,
MainWin from MainSoft, to build a Unix version. This proved unsatisfactory due to the time re-
quired to complete the port, which lagged a version behind the Windows implementation. HPAC
source included C/C++ code accessing Microsoft Foundation Classes (MFC) as well as Fortran us-
ing Absoft features to call the Win32 Application Programming Interface (API) from Fortran code.
Among the many issues porting to Unix were differences in Fortran compilers and handling of
shared objects vs Windows dynamic link libraries (DLLs). Moreover, the resulting application did
not behave, look, or feel as other applications on a Unix desktop, resulting in a very unpleasant
user experience.

A less ambitious effort followed to port only the calculation engine to Unix. The client re-
mained a Windows application, but invocations of calculation routines were replaced with a client
call to a socket server wrapping the engine. A ported calculation engine allowed powerful Unix
hardware to be used for computations. Emulation environments such as SoftWindows95 made
possible execution of the client Win32 application under Unix without incurring the performance
degradation of calculations under an emulated environment. This attempt at porting was more
successful but also suffered from a slight lag in versions as well as compiler issues in porting the
calculation engine code.

Costs of explicit porting and maintenance efforts made it clear that portability must be an
architectural goal for HPAC.

1.2 EXTENSIBILITY

At the heart of HPAC is Second-order Closure Integrated Puff (SCIPUFF), a Lagrangian puff
dispersion model developed by Titan System Corporation.1–4 Detailed descriptions of material
releases, meteorology, terrain, and other inputs are fed to SCIPUFF, which calculates the transport
and dispersion and tracks material concentrations, depositions, and doses.

HPAC also includes incident source models which take parameterized descriptions of opera-
tional incidents and produce material releases suitable for input to SCIPUFF. Source models have
been added from time to time over HPAC’s history and will continue to be added as needed
to address new requirements. Therefore, it is necessary for the HPAC architecture to provide a
framework for plugging in new source models without requiring a system rebuild. In its original
form, HPAC provided this extensibility via Win32 DLLs.

Another characteristic of HPAC development that calls for an extensible architecture is the
number and geographic spread of the organizations comprising the development team, literally
coast to coast. Such a collaborative effort is aided by a framework in which pluggable modules
can be tested and operated independently of other modules.

1.3 DEPLOYMENT FLEXIBILITY

HPAC system requirements call for three basic modes of deployment:

• a standalone system with no network connection,
• a client-server arrangement with data available on the client but calculations performed on

a server (heavy client), and

2

• a client-server environment with data downloaded to the client from the server and calcula-
tions performed on the server (thin client).

Thin client deployment has an additional requirement to be Web-based, or accessible via a Web
browser with no prior installation of the application. The range of deployment options is an
indication of the range of environments and settings in which HPAC must execute. Operational
requirements call for HPAC to run on a laptop in the field as well as on a headquarters network.

1.4 CLIENT-SERVER OPERATION

Some organizations have investments in hardware providing computational capabilities ex-
ceeding that of most desktop computers. HPAC is computationally intensive in nature with
source model, transport, and dispersion calculations. As mentioned above, a means of using
server hardware for HPAC is needed. In addition to computational systems, many organizations
rely upon servers for running work groups and enterprises for file and print sharing, and some
have centrally managed configurations in which client workstations mount everything from a cen-
tral server. Thus, HPAC’s architecture must provide for client-server operation and deployment.
Further, functionality available via services on the network is easily accessible to other tools and
systems, aiding integration.

1.5 INTEGRATION

DTRA’s Technology Development directorate is employing network technologies to link tools
and systems into integrated environments.5 In addition to Department of Defense (DOD) wide
initiatives, such as the High Level Architecture (HLA)6 for simulation environments, DTRA is
fielding collaborative tool environments such as the Integrated Target Planning Toolset (ITPTS).7

HPAC will be a part of ITPTS and multiple HLA federations as well as other environments (e.g.,
WARSIM8).

As a standalone Windows application, HPAC didn’t lend itself to integration. Rather, almost
every use of HPAC in another system required a custom solution. An HPAC more integrable with
other systems is the original motivation behind the new architecture, as well as it’s principle goal.

1.6 MAP-BASED INTERACTION

Events modeled in HPAC occur at a geographic location, whether real or nominal. Conse-
quently, geographic or map-based representation of HPAC projects is desired. There are many
possible solutions for map-based display and user interaction, ranging from simple map images
to full geographic information system (GIS) capabilities. This new capability is a key aspect of the
new architecture.

1.7 MOTIVATION

HPAC’s original implementation toward a particular platform is common among computa-
tional tools. This is partly because tools and techniques used in advanced architectures have only
recently become widely available. Technologies available at the end of calendar year 1999 when
the re-engineering of HPAC began were highly effective in enabling an architecture to achieve the
goals and requirements described above. The choices from available alternatives and elements of
the new HPAC architecture are a useful case study for re-engineering efforts for other systems.

3

This paper begins with a brief overview of the principle components of HPAC, a necessary
background for understanding architectural choices. Elements of the new architecture are de-
scribed in terms of the goals they achieve. Where relevant, choices from available or competing
technologies are explained, and remaining architectural issues are discussed.

2 HPAC OVERVIEW

SCIPUFF, the T&D engine, and incident source models have been identified as key compo-
nents, but there are many other pieces to HPAC.

Weather data is critical to dispersion modeling, and HPAC has GUI and reader components for
ingesting surface observations, upper air profiles, and forecast meteorology, as well as a historical
climatology database. Effects modules for computing collateral human effects have computational
components called from the dispersion engine as well as GUI control components.

HPAC’s “material database” is a collection of files, one per material. In the original architec-
ture, material files were read by the T&D engine as well as routines in the application GUI. The
new architecture includes a material server that provides all components a single point of access
to the repository of material files.

HPAC includes many GUI components for editing parameters and properties and controlling
the dispersion calculation process. Source models themselves have a computational component
for producing releases from incident descriptions and GUI components for editing incident de-
scriptions. Added for the new architecture is a map display or representation of HPAC projects
and calculation results.

Fig. 1 illustrates the transition to the new architecture. What was a single component (PC-
SCIPUFF in Fig. 1) containing the T&D engine (i.e., SCIPUFF) as well as the GUI is now separated
into several client and server components. The T&D engine is represented by the “HPACtool” box
in the new architecture, described in Section 3.6.1.

Fig. 2 is a screen shot of the HPAC client GUI, named the Project Editor. Icons on the Incident
Definition panel represent incident source models. Incidents defined for the project appear with
other project objects in the horizontal Object Palette below the map display. Rendered on the
map are icons representing releases as well as contour plots. In HPAC an incident is a notional
description of an event, and a release is a detailed description of a dispersed material. Incidents
produce one or more releases, and releases are fed as input to the T&D engine.

A typical sequence of events for a user begins with the definition of one or more incidents. For
this, the user interacts with GUI components associated with incident source models. The models
generate detailed release descriptions associated with each incident, and other GUI components
allow the user to edit the generated releases. Using additional GUI components, the user will
define the weather for the project and optionally specify calculation parameters. Next, the user
requests a dispersion calculation and interacts with HPACtool (SCIPUFF) to view feedback and
answer questions, also via GUI components. When the calculation completes, the user requests
plots on a map display and/or storage of results data in American Standard Code for Information
Interchange (ASCII) files in one of many available formats.

3 NEW HPAC ARCHITECTURE

All the system goals, portability, extensibility, deployment flexibility, client-server operation,
and easy integration with other systems are met in the new architecture as described in this sec-

4

Material Server

ProjectEditor

Server Host

FileServer

HPACtool

Client Host

CORBA

Java RMI

Map Display

Weather Button

Scipuff Bean

Plot Bean

Model Bean

File Server

Scipuff Server

RadFile Merger

Stcalc Server

Model Server

DLL
Load & Call

PCSCIPUFF
Source Model

DLLGUI,
Transport

and
Dispers’n

...
Source Model

DLL

Standalone PC OLD

NEW

Fig. 1: Transition from the old to the new architecture.

tion. However, the kind of GUI, rich or Web-based, determines much of an application’s architec-
ture and was a key early decision for HPAC.

3.1 RICH GUI OR WEB APPLICATION

At the very beginning, HPAC’s new architecture faced a critical decision. Any application
involving user interaction and display has two choices for the means of providing the user expe-
rience: a user interface based on Hypertext Markup Language (HTML), or a rich user interface.
An HTML interface implies a Web application with HTML pages served from a Web server and
dynamic generation of the pages using one or more of a myriad of technologies ranging from Com-
mon Gateway Interface (CGI) scripts, to Java Servlets and Server Pages, to Enterprise Java Beans
(EJB) hosted in a full Java 2 Enterprise Edition (J2EE) compliant application server. Regardless of
the back end technologies used to generate Web pages, the user interacts with the application via a
Web browser containing pages with HTML forms. The spartan capabilities of HTML form inputs
can be augmented with Java applets or objects for plug-ins such as Macromedia Flash, but adding
these elements moves the application toward the other end of the scale, or a rich user interface.

5

Fig. 2: New HPAC client GUI.

Ignoring hybrid approaches in which plug-in objects are embedded in an HTML page, a rich user
interface involves a client application using some GUI framework and widget set. Advantages of
a rich interface include:

• an improved user experience through more functional widgets and components,
• easier application maintenance,
• potentially lower up front development costs, and
• opportunities for reuse of interface components.9

A compelling argument in favor of HTML interfaces is the ease of deployment, for the user
need only have a competent browser to access the application, regardless of the platform.9 Further,
user interactions are necessarily simplified if restricted to standard HTML form elements and
the Web paradigm of page-based processing. However, the concept of rich user interfaces for
applications driven from Web servers has received significant attention.9, 10

For the new HPAC architecture, both Web-based HTML interfaces and a GUI application were
considered. Requirements for very high levels of user interactions, such as dragging icons on a
map to relocate releases, drove HPAC toward the use of a rich GUI. Section 3.2.1 describes how
Java provides a rich, platform portable GUI for HPAC.

3.2 PORTABILITY

Among the many choices for the new architecture was the development language and runtime
environment. HPAC in its original form was a combination of C, C++, and Fortran relying on

6

Win32 API calls and MFC for the GUIs. Several features of Java make it an easy choice for a
platform portable system.

3.2.1 Java

Strictly speaking, there is a level of portability offered by C, C++, and Fortran, namely source
code portability. However, variations among the compilers, in particular Fortran compilers, re-
quire modifications to the source. For example, some compilers place local variables on the stack
by default, but some compilers make them static, making explicit automatic statements neces-
sary. Regardless, source code portability requires recompilation for each target platform. The
binding between source and platform-specific object code occurs at compile time and is therefore
static.

Java portability differs in two principle ways, one horizontal and the other vertical. Java source
is compiled to a platform-independent byte code which is executed within the Java Virtual Ma-
chine (JVM).11 The specifics of the platform are addressed in the JVM implementation. Thus, the
binding of the source code to the native object code occurs within the JVM at runtime. This is the
horizontal dimension of Java portability.

A Java runtime environment includes many technologies and APIs, including GUI compo-
nents, security, networking, distributed objects, naming services, and other functionality needed
in HPAC. The Java editions and configurations define what core and extension technologies are
available. For example, the Java 2 Standard Edition (J2SE) is the basis for desktop Java appli-
cations. All of the capabilities of J2SE are available with a J2SE implementation for a particular
platform. This is the vertical dimension of Java portability.

As an illustration of the power of the vertical dimension, consider a platform portable applica-
tion involving a GUI. For Windows, MFC and the Win32 API would be necessary, but for a Unix
platform, X11 and Motif, Gtk, or Qt would be needed for a C/C++ GUI. With J2SE, this issue is
solved via the abstract windowing toolkit and Java Foundation Classes which provide compo-
nents for building a GUI. A component or application built with such components runs on any
platform with a J2SE implementation.

Scripting environments (e.g., Tcl/Tk,12, 13 Python14) and cross platform GUI libraries such as
the Fast Light Toolkit,15 are alternatives to Java for achieving platform portability, but the latter
address only one issue, GUIs. Scripting languages such as Python are intriguing and port to many
platforms but do not include the range of technologies in J2SE. Further, scripting languages are
weakly typed as opposed to Java’s strong typing. Maintainability and robustness in weakly typed
environments tend not to scale well.

True Object-Oriented Environment. In addition, Java is a true object-oriented environment.16

C++ provides an object-oriented programming model, but the static binding of source to platform
at compile time precludes transmission of an object across a network to a process running on a dif-
ferent platform, or the same platform where the code supporting the object is missing. Some argue
Java is not a pure object-oriented language because it supports primitive types.17 Nonetheless, it
is true in the sense that source is not statically bound to a platform at compile time. Rather, trans-
mission of an object, code and data, to a process on another platform is not only possible but is an
integral part of the Java Remote Method Invocation (RMI) mechanism. As a true object-oriented
development and runtime environment, Java supports a dynamic binding concept critical to the
new HPAC architecture, as described in Section 3.3.1.

7

Java provides all of the characteristics of an object-oriented language: abstraction, encapsula-
tion, modularity, hierarchy, typing, concurrency, and persistence.18 The first five are commonly
supported in modern languages, such as C++. Support for concurrency and persistence within the
language and runtime environment is unique. Typically, these capabilities are achieved through
operating system facilities, but Java supports them with language and environment constructs.

3.2.2 No Native Code on the Client

The layer of abstraction provided by the JVM comes with a performance cost. Although perfor-
mance has been a focus of Java development with the HotSpot™ virtual machine (VM)19 and has
improved dramatically, Java cannot match native object code in execution speed.20 Thus, native
code, especially Fortran calculations, will remain in compute-intensive portions of HPAC.

However, migration to a client server architecture allows native code to be isolated at the
server with only Java code at the client. HPAC enforces a “no native code on the client” rule in
order to preserve portability of the GUI client application while accepting that supported server
platforms will be limited to those for which the native C, C++, and Fortran code in server objects
can be ported. This also limits the platforms for which a standalone deployment is possible but is
a necessary compromise. Moreover, native code in the client application would have to be ported
to all potential client platforms, thereby sacrificing the portability of the JVM layer and adding
great complexity to a thin client deployment.

There are implications for this rule. Any client Java component accessing functionality im-
plemented in native code must do so as a network client. All native functionality is provided
as network services. As described in Section 3.5, functionality exported to external tools is pro-
vided in CORBA services, whereas functionality existing solely to support an HPAC Java client
component may be provided using Java RMI.

Architectural elements supporting deployment flexibility (described in Section 3.4) also help
meet the requirement for platform portability, but use of Java as the development and runtime
environment provides most of what is necessary to meet the portability requirement.

3.3 EXTENSIBILITY

Design by interface, Java’s support for dynamic class loading and reflection, and runtime con-
figuration provide the basis for extensibility in the HPAC architecture. The principle applied con-
cept is dynamic binding.

3.3.1 Dynamic Binding

Dynamic binding is a key attribute of an extensible, flexible system.21 Whereas DLLs and
shared objects are the mechanisms for dynamic binding with C, C++, and Fortran, Java provides
dynamic class loading and reflection.

If the representation of the system definition and implementation, such as the source code,
and the realization of that representation, such as a linked executable, are determined at compile
and link time, the system is statically bound. Completely static binding in software is avoidable
by reading configuration information at runtime, usually from configuration files. However, for
languages compiled to native code, such as C++, there is no mechanism in the language to support
dynamic or runtime binding. Rather, operating system mechanisms such as shared objects are the
only means of achieving a dynamic binding of an implementation to an executing application.

8

Java’s dynamic class loading mechanism is similar to DLLs, but the difference is the amount
of a priori information necessary to make use of the dynamically loaded object. The functions or
objects available in a dynamically loaded object must be known and planned for in the calling
code. In contrast, this information can be discovered from a dynamically loaded Java class or
object instance via the reflection mechanism.22

Moreover, a dynamically loaded Java object implementing a specific interface can be accessed
and invoked in terms of that interface regardless of any additional capabilities or functionality it
contains. Thus, dynamic class loading and design by interface in combination are the basis of a
framework for pluggable components.

3.3.2 Design by Interface

Design by interface is a common approach for decoupling specification and implementation
and is used throughout HPAC.23, 24 Often an abstract base class implementing some or all of the
interface as well as providing additional support methods is provided. This follows the Template
Method design pattern25 and helps standardize behavior and provides commonly used function-
ality for reuse by concrete class implementations.

Although there are several such pluggable frameworks in HPAC, three are particularly illus-
trative of the concept as employed in HPAC: incident source model servers, incident source model
beans, and map displays.

Incident Source Model Servers. As described in Section 1.2 incident source models are critical
components of HPAC for which an extensible framework is needed. Section 3.5.1 describes the
choice of CORBA as the object distribution mechanism for exported services, and each incident
model server provides such a CORBA service. Thus, the interface in this case is specified with
CORBA Interface Definition Language (IDL), specifically the IncidentModelServer interface,
represented in an abbreviated class diagram in Fig. 3.

Model servers have two client audiences, external tools needing the model’s calculation and
release-generating capabilities, and the T&D engine itself, which makes calls to the models during
the calculation. IncidentModelServer defines methods for both these situations. The collabora-
tion is illustrated in Fig. 4.

For this framework, the IncidentModelServer IDL interface defines how the other compo-
nents of HPAC interact with the service. Each source model defines its own IDL interface ex-
tending IncidentModelServer and providing any additional capabilities as appropriate for the
model. These additional methods are accessible to any client that accesses the server in terms of
the model’s defined interface.

IncidentModelServerImpl is the abstract base class providing default implementations of
several methods. Note in Fig. 3 XxxServerImpl implements only those methods IncidentMod-
elServerImpl does not provide via inheritance. This does not preclude any model server from
providing a custom implementation of such a method, but it provides default behavior any model
can reuse.

Use of the Template Method design pattern is demonstrated in the collaborations between
the T&D engine and the source models, as shown in Fig. 4. While calculating, the engine calls
a source model’s updateRelease() method to update a release definition. This method is im-
plemented in the abstract base class to perform some pre-processing, call another method, up-
dateReleaseData(), and then perform necessary post-processing. All model servers must either

9

<<Interface>>
IncidentModelServer

void closeIncident()
void computeEffect()
void initIncident()
void restoreCustomizedProperties()
void terminate()
void updateIncident()
void updateRelease()

IncidentModelServerImpl

void closeIncident()
void computeEffect()
void restoreCustomizedProperties()
void terminate()
void updateRelease()
void updateReleaseData()

<<Interface>>
XxxServer

XxxServerImpl

void initIncident()
void updateIncident()
void updateReleaseData()

<<implements>>

<<extends>>

<<implements>>

<<extends>>

Fig. 3: IncidentModelServer framework.

implement updateReleaseData() for standard processing or override updateRelease() if non-
standard processing is necessary. This pattern of specification by interface with implementation
of standard behavior in an abstract base class is used throughout HPAC, both for client and server
components.

Configuration files read at runtime inform the HPAC’s server launcher component which inci-
dent source models are available, and each one identified is dynamically loaded and instantiated
during system initialization. Snippets from the server configuration file follow:

hpacserver.servers.0=\
ScipuffFactory,\
mil.dtra.hpac.server.scipuff.impl.ScipuffServerFactoryImpl

hpacserver.servers.1=\
MaterialServer,\
mil.dtra.hpac.material.server.impl.MaterialServerImpl
...
hpacserver.servers.3=\
ChemBioWeaponFactory,\
mil.dtra.hpac.models.cbwpn.server.impl.ChemBioWeaponServerFactoryImpl

hpacserver.servers.4=\
SmokeWeaponFactory,\

10

model_server: IncidentModelServerclient

engine: DispersionCalculator

1. client calls initIncident()

2. model returns initialized incident

3. client calls updateIncident()

and releases

with modified incident description

4. model returns new incident and releases

5. client requests dispersion calculation
passing releases

7. model returns updated release

release update via
6. engine requests

updateRelease()

Fig. 4: Model server collaboration.

mil.dtra.hpac.models.swpn.server.impl.SmokeWeaponServerFactoryImpl
...

Each server is specified with a service name and the path of the implementation class to be
dynamically loaded. Available servers are determined once at startup. Were the determination of
which server class to load delayed until invocation, the binding would be even more dynamic and
would support addition of model servers to a running system. However, a runtime deployment
would result in additional delay for the load when a new model server is invoked the first time.
For HPAC, any organization may provide their own model server implementation and add it to
the configuration at startup.

Incident Source Model Beans. HPAC includes a Java client GUI, the Project Editor, for accessing
HPAC services and managing projects. Users define and edit incidents via client side components
(or JavaBeans™) provided by the incident source models. Beans are merely objects which adhere
to a defined pattern. Specifically, object properties are exposed via getter and setter accessor meth-
ods whose names identify the property. For example, getLocation() and setLocation() are
accessor methods for a location property.

Fig. 5 gives an abbreviated class diagram for incident model beans. Much of the required
functionality is provided in abstract base classes IncidentModel and ModelPanel, representing
the model bean and it’s GUI editor bean, respectively.

Although a model bean is free to override any IncidentModel behavior, it is required to pro-
vide only one method, createIncidentObjects(), and should provide overrides for the serial-
ization methods described in Section 3.3.3. Similarly, a model’s extension of the ModelPanel base
class need only provide three methods, init(), load(), and store(). For the init(), the model
implementation may invoke super.init() to create an editor with standard tabs and controls or
customize the appearance completely.

As with model servers, available model beans are specified via a runtime configuration file,
and the configuration is processed only once, at startup. The snippet below is from the client

11

application properties or configuration file. Available models are specified as a list of model bean
implementation class paths.

hpac.modelBeans=\
mil.dtra.hpac.client.models.Advanced,\
mil.dtra.hpac.models.cbwpn.client.ChemBioWeapon,\
mil.dtra.hpac.models.CBFac.client.CBFacWeapon,\
mil.dtra.hpac.models.swpn.client.SmokeWeapon,\
mil.dtra.hpac.models.mint.client.MissileIntercept,\
mil.dtra.hpac.models.nwi.client.NWI,\
mil.dtra.hpac.models.nfac.client.Nfac,\
mil.dtra.hpac.models.nwpn.client.Nwpn,\
mil.dtra.hpac.models.rwpn.client.RWPN

An organization may provide their own client model beans corresponding to their in-house
model server implementations and configure HPAC’s Project Editor to make them available. Re-
gardless of what additional functionality any model bean provides, Project Editor dynamically
loads the class specified in the configuration and instantiates objects, interacting with those ob-
jects solely in terms of the IncidentModel and ModelPanel abstract base classes.

IncidentModel

protected void addMapIcons()
protected void closeIncident()
ModelDialog createEditDialog()
protected Object[] createIncidentObjects()
protected Collection createMapIcons()
protected JPopupMenu createPopupMenu()
BeanInfo getBeanInfo()
void install()
void readProps()
protected void removeMapIcons()
void showEditDialog()
void writeProps()

Xxx

protected Object[] createIncidentObjects()
void readProps()
void writeProps()

ModelPanel

protected void addNotesTab()
protected void addWhenTab()
protected void addWhereTab()
protected void checkModel()
void close()
protected Component createNamePanel()
void init()
void load()
void store()
void storeAndUpdate()

XxxPanel

void init()
void load()
void store()

contains

contains

Fig. 5: IncidentModel bean framework.

Map Display. Map display in an application can range from a simple generated image on top of
which are drawn icons and other annotations to an environment in which the map display is the
application, such as a GIS. In HPAC the map display is merely another GUI component or bean
contained in the Project Editor window. Map display requirements call for many formats (e.g.,

12

National Imagery and Mapping Agency’s [NIMA] Compressed Arc Digitized Raster Graphics
[CADRG], Controlled Image Base [CIB] imagery, shapefiles) and data types (e.g., meteorology,
terrain, roads, railroads, weather stations), with user control of the display.

The system and user requirements are met with OpenMap™26 , which provides a map dis-
play bean. OpenMap provides extensibility through a layer framework, and organizations can
implement layers and add them to the configuration dynamically. However, HPAC avoids a de-
pendence on OpenMap and preserves the flexibility to use an open source or commercial product
in the future. The simple map display framework illustrated in Fig. 6 accomplishes this.

<<Interface>>
MapDisplay

void addPropertyChangeListener()
void defined(String url, Properties props, Context context)
void edit()
MapProjection getMapProjection()
void recenter(Point center)
void removePropertyChangeListener()
void setMapProjection(MapProjection proj)
Point2D unprojectDisplayPoint(Point pt)
void zoomFull()
void zoomIn(Point center)
void zoomIn(Rectangle zoom_box)
void zoomOut(Point center)

<<Interface>>
MapProjection

Rectangle getViewPort()
Rectangle2D getWindow()
Point projectWorldPoint(Point2D pt)
void setViewPort(Rectangle viewport)
void setWindow(Rectangle2D window)
Point2D unprojectDisplayPoint(Point pt)

<<Interface>>
MapComponent

void updateMapProjection(MapProjection proj)

MapDisplayDef

String getClassName()
String getName()
String getURL()
void setClassName(String name)
void setName(String name)
void setURL(String url)
String toString()
void valueOf(String root_url, String value)
static List readDefs(String root_url, Properties props, String prefix)

AbstractProjection

protected Rectangle getViewPort()
Rectangle2D getWindow()
Point projectWorldPoint(Point2D pt)
void setViewPort(Rectangle viewport)
void setWindow(Rectangle2D window)
Point2D unprojectDisplayPoint(Point pt)

AbstractMapDisplay

MapProjection getMapProjection()
Dimension getMinimumSize()
void recenter(Point center)
void setMapProjection(MapProjection proj)
Point2D unprojectDisplayPoint(Point pt)
void zoomIn(Point center)
void zoomIn(Rectangle zoom_box)
void zoomOut(Pont center)

<<realize>>

<<realize>>

Fig. 6: Map display framework.

Once again the framework relies on a design by interface approach and runtime configuration
and deployment of objects implementing the framework. Two interfaces define the framework,
MapDisplay and MapProjection, and an abstract base class providing partial implementation of
both is provided in AbstractMapDisplay and AbstractMapProjection, respectively. Provided
with HPAC are implementations for OpenMap and a simpler implementation for display of an
image referenced to geographic bounds. The following excerpt from the client application config-
uration file defines maps in the default HPAC installation.

13

hpac.maps.0=Global Land/Sea,mil.dtra.map.openmap.OmMapDisplay,\
${hpac.rootURL}/data/maps/landsea/landsea.map
hpac.maps.1=Global Political,mil.dtra.map.openmap.OmMapDisplay,\
${hpac.rootURL}/data/maps/admin/admin.map

The class path of the MapDisplay implementation is mil. dtra. map. openmap. OmMapDisplay
for both map definitions. The URL specified for each map identifies an optional configuration file
specific to the map display implementation. In this case, it’s an OpenMap configuration file. A
snippet from admin. map follows:

openmap.Projection=cadrg
openmap.layers=graticule DayNight contrast scaled
openmap.startUpLayers=scaled

contrast.class=mil.dtra.map.openmap.ContrastLayer
contrast.prettyName=Contrast Mask
contrast.color=80ffffff
DayNight.class=com.bbn.openmap.layer.daynight.DayNightLayer
DayNight.prettyName=Day/Night Areas

An organization deploying HPAC can customize maps at three levels. First, they can modify
the respective OpenMap configurations of the identified maps. Here they may change parameters
of provided layers and other configuration properties, or they can include their own OpenMap
layer implementations. Note in the example above the .class property for a named layer identi-
fies the class which OpenMap dynamically loads and instantiates. It is only necessary for the class
to extend the com. bbn. openmap. Layer class.

Second, they may modify the HPAC application properties to specify other or additional maps
(hpac. maps. n property) using the mil. dtra. map. openmap. OmMapDisplay implementation
of the HPAC map display framework.

Third, they may provide their own implementation of the map display framework by naming
a class that implements the mil. dtra. map. MapDisplay interface in a map display definition
property. Note the HPAC map framework dynamically loads the specified class, mil. dtra.

map. openmap. OmMapDisplay in the examples above.

3.3.3 Serialization via Java Properties

Like most applications, HPAC needs to save and load projects. An HPAC project is merely
an object containing other objects comprising the state of the project as defined and edited by the
user. In object-oriented terminology, saving an external representation of an object is referred to
as object persistence, and the process of writing and reading an object’s representation is called
serialization and deserialization. (Reading and writing are often referred to collectively as serializa-
tion.) Rather than have the top level object, in this case the HPAC project, responsible for saving
and loading a representation of all its contents, each component object shares the responsibility by
(de)serializing its own state. Java provides binary object serialization for classes tagged with the
java. io. Serializable interface, but a binary representation requires Java code to view or edit
the serialized state of the project.

HPAC project files need to be human readable and suited for manipulation by other tools,
including text editors. Further, HPAC needs a serialization mechanism that, like Java’s binary
serialization, is extensible and allows objects to self-serialize. The solution is a framework based

14

on Java properties files and the java. util. Properties class. An abbreviated class diagram is
shown in Fig. 7.

<<Interface>>
PropsSerializer

void readProps(ValueProperties props, String prefix)
void writeProps(ValueProperties props, String prefix)

AbstractPropsSerializer

void readProps(ValueProperties props, String prefix)
void writeProps(ValueProperties props, String prefix)

ValueProperties

void addParsers(Parser[] parsers)
Object getArray(String key, Class type)
boolean getBoolean(String key, boolean default)
Object getDelimitedArray(String key, Class type, String delimiter)
double getDouble(String key, double default)
float getFloat(String key, float default)
int getInt(String key, int default)
Object getObject(String key, Class type, Object default)
PropsSerializer getObjectInstance(String key, Class type)
String getProperty(String key)
boolean putArray(String key, Object value)
boolean putBoolean(String key, boolean value)
boolean putDelimitedArray(String key, Object value, String delimiter)
boolean putDouble(String key, double value)
boolean putFloat(String key, float value)
boolean putInt(String key, int value)
boolean putObject(String key, Object value)
void putObjectInstance(String key, PropsSerializer object)
void putObjectProperties(Object object, String prefix)
void removeParser(Parser parser)
void setObjectProperties(Object object, String prefix)

<<Interface>>
Parser

Class getObjectClass()
Object read(ValueProperties props, String prefix)
boolean write(ValueProperties props, String prefix, Object object)

AbstractParser

Class getObjectClass()

<<realize>>

<<realize>>

0..*

Fig. 7: Properties serialization framework.

Most of the implementation details are encapsulated in the ValueProperties class, which
relies upon the java. beans. Introspector to determine an object’s properties by referencing a
BeanInfo provided for the object or using Java’s reflection mechanism.

An object’s properties are converted to a string representation in one of two ways. First, an
object may be represented by a single string. In this case a Parser implementation is necessary
and must be registered for the class in a ValueProperties object. ValueProperties includes
parsers for common Java core classes such as java. awt. Dimension and java. awt. Point. A
snippet from an HPAC project file follows.

URL=file\:/home/re7/.hpactest/nfac1.hpac
class=mil.dtra.hpac.data.Project
limits.class=mil.dtra.hpac.data.project.Limits
limits.maxGridCellsPerSurface=25000
limits.maxMetHorzSize=1000
limits.maxPuffs=20000
maxTimeStep=900.0
objectSet.0.class=mil.dtra.hpac.models.nfac.client.Nfac

15

objectSet.0.incident.ID=incident-1013192452738
objectSet.0.incident.class=mil.dtra.hpac.data.Incident
objectSet.0.incident.coord=-80.43389129638672,40.621944427490234
objectSet.0.incident.hasCustomMaterials=false
objectSet.0.incident.hasCustomReleases=false
objectSet.0.incident.location.class=mil.dtra.hpac.data.LLALocation
objectSet.0.incident.location.value=-80.43,40.62,0.0

Single string representation works well for classes with a small number of properties that are
of primitive types like int, boolean, or double. Refer to the “objectSet.0.incident.coord” and
“objectSet.0.incident.location.value” lines above. Properties of these objects are delimited with
commas in a single value.

Second, an object may be represented as a hierarchy of properties and sub-objects with each
leaf property stored as a single string. This is illustrated above by the limits and “objectSet. 0. in-
cident” objects in the listing above. The limits object has three properties, maxGridCellsPerSurface,
maxMetHorSize, and maxPuffs, each of type int and represented as a separate key or line in the
file. A period separates the property names. For example, “limits. maxGridCellsPerSurface” rep-
resents the maxGridCellsPerSurface property of the limits property of the project object represented
by the listing.

The incident property is an example of a hierarchical object. Of the five properties illustrated
above, three are of primitive types: ID, hasCustomMaterials, and hasCustomReleases. The other
two properties, coord and location, are themselves objects. Finally, the project object itself is a
hierarchical object. In the listing we see its URL, limits, maxTimeStep, and objectSet properties.

In the framework described in Fig. 7, an object capable of serializing itself must implement
the PropsSerializer interface, analogous to implementing Serializable for Java binary seri-
alization. PropsSerializer specifies two methods, readProps() for deserialization and write-

Props() for serialization. Hierarchical objects must implement PropsSerializer. Further, there
are two serialization modes in this framework, implicit and explicit.

Implicit serialization relies on introspection to recognize the properties of an object, either via
public getter and setter accessor methods as per the JavaBean pattern or a BeanInfo associated
with the object. The return or parameter type class specified in the accessor is checked first to see
if it implements PropsSerializer, in which case the parameter’s readProps() or return value’s
writeProps() method is called for deserialization or serialization, respectively. Otherwise, the
class is checked against registered parsers. If a match is found the parser is used to convert the
object to or from a string representation. In the absence of a parser, the class is compared against
the primitive types which are handled internally. Finally, the object is ignored if no information
about its type can be determined.

Explicit serialization relies upon the class implementer to make explicit calls in readProps()

and writeProps() methods to deserialize or serialize the object’s properties. This is analogous
to providing readObject() and writeObject() methods for binary serialization. A class with
no other superclasses can extend AbstractPropsSerializer and inherit implicit serialization.
Any class can invoke the implicit mechanisms by calling the setObjectProperties() and put-

ObjectProperties() methods of the ValueProperties instance for implicit deserialization and
serialization, respectively.

Such a framework is necessary for HPAC to be extensible. Any organization desiring to pro-
vide their own source model implementation must have a means of serializing properties of an
incident description as part of the HPAC project. They can do so by providing implementations
of the PropsSerializer methods readProps() and writeProps() for their IncidentModel ex-

16

tension. Other kinds of objects may be plugged into the serialization framework with implemen-
tations of Parser registered for their classes or PropsSerializer implementations with implicit
or explicit serialization.

3.3.4 Jar Tiers and the Development Process

In C/C++ development, header files and libraries are the currency for exchanging software
specifications and implementations, respectively. For Java, the medium of exchange is the Java
archive or jar file, used for both development and execution. HPAC Java packages are organized
into jars, and jars are organized into tiers of dependency. For the most part, the resulting jar
organization reflects the structure of the development team, but since responsibility for various
functionality was delegated among the developer organizations, this organization resulted in a
reasonably functional packaging.

Jars are grouped into tiers, a tier representing a set of jars depending only on jars at lower
tiers. Clearly, design changes in jars at lower tiers are more costly, cascading their effects to the
higher tiers. Identification of dependency tiers is necessary in order to effectively manage changes
affecting dependent code and requiring recompilation of dependent source. Examples of such
changes include modification of a method signature or constant value and the removal of a class,
interface, or method.

3.4 DEPLOYMENT FLEXIBILITY

As mentioned above, a key goal for the HPAC architecture is support for the range of de-
ployment options dictated by the system requirements. Once again, core Java capabilities prove
extremely helpful, in particular Java’s networking (java. net) and I/O (java. io) packages and
support for URLs27 in identifying data sources.

3.4.1 URLs for File Reference

URLs specify a protocol for an address specification. URLs are commonly used to specify a
resource available via the Hypertext Transport Protocol (HTTP), the http: protocol tag. URLs
with a file: protocol simply specify a file on a filesystem accessible to the local host. The Java
networking and I/O capabilities hide the specifics of the source of data and allow the using code
to perform I/O via a single API, regardless of the location and mechanism whereby the data
are transferred. A properly initialized java. net. URL object is used to retrieve a java. io.

InputStream instance via via the openStream() method.
However, there is a limitation. An InputStream may be used to access data sequentially, not

randomly. For configuration files, reference data, and other static, sequentially read data in HPAC,
URLs are the address or locator of the source of the data. This allows HPAC to be configured
to access this data via a local or remotely mounted filesystem using a file: URL, or the data
may be placed behind a Web server and specified using http: URLs. Other URL protocols are
possible, such as ftp: for the File Transfer Protocol (FTP), but Web service is preferred for reasons
of security and access control. Note that serving static, sequential data from a Web server is a
necessary prerequisite to deploying HPAC as a thin client, described in Section 3.5.5.

URLs work very well for sequentially accessed files, but direct- or random-access files cannot
be read from or written to a URL. Access to random-access data must be brokered by a server
object. If the size of the data is relatively small, a class providing the same methods as java. io.
RandomAccessFile but actually reading and writing data across a network connection may be

17

used. A client class and corresponding RMI server are maintained to support that need, but the
size of the data to be processed by HPAC components has precluded their use.

Two HPAC components in particular rely heavily on direct-access files: weather plotting, and
map display. In both cases, the volume of data is too large to simply perform RandomAccessFile

operations across the network. Rather, a service must be defined to send only the necessary data
to the client. For weather plotting, these data would be contour polygons, marker positions, and
such. For map displays, a map image would be produced for the client.

3.4.2 Runtime Configuration

Flexibility in deployment requires reading a dynamic, runtime configuration. HPAC uses sys-
tem properties and properties files read into java. util. Properties objects to specify the sys-
tem configuration. Examples have been provided above. This is also the means by which imple-
mentations of interfaces defined in the frameworks described in Section 3.3.2 are specified for the
system.

3.5 CLIENT SERVER OPERATION

There are many ways to implement a client-server system using Transmission Control Proto-
col and Internet Protocol (TCP/IP) data and network layer protocols, respectively, which fuel the
Internet.28 Mechanisms range from socket-based communication to distributed object systems. It
was clear early on that HPAC needed the latter, but there are several distributed object technolo-
gies available.

3.5.1 Choices for the Distributed Object Mechanism

Two technologies dominated early design discussions for HPAC: CORBA and Microsoft’s
Component Object Model (and Distributed Component Object Model, or COM / DCOM). Al-
though DCOM has advantages for Windows platforms, it was eliminated early since it has not
been ported to very many platforms, Solaris being virtually the only non-Windows platform sup-
ported.29 Before settling on CORBA, some other technologies were explored, and the options
within CORBA itself were investigated. Services written directly against sockets were also re-
jected early on as requiring too much attention to network communication and the necessity of
establishing data exchange protocols. For all intents and purposes, CORBA was the only choice
to meet the requirement to support non-Java clients running on any platform.

Java RMI. For a pure Java application, RMI is the most effective and efficient means of deploying
object-based services. With a Java client, the temptation to use RMI in HPAC was strong. How-
ever, RMI requires Java at both ends, which means non-Java clients would have to build a bridge
between native code and a Java component to access the services. Although bridging products
are available for specific technologies,30 this was viewed as too contrary to HPAC system goals.
Thus, RMI was rejected for services published to external tools but is used for “private” internal
services supporting client components in the HPAC GUI.

Enterprise JavaBeans. Another technology growing in the Java world at that time was EJB, a
standard environment for developing and deploying server-side components.31 Although such

18

components must be implemented in Java, they are deployed at a tier behind components inter-
acting directly with a client. Typically, they support Web applications using Java Servlets and Java
Server Pages. The EJB framework for server-side components is compelling, but EJBs must run in
a container. Although there are open source alternatives to avoid the high cost of commercial EJB
containers, the runtime environment necessary to support EJBs is expensive in terms of system re-
sources and complexity, especially for a standalone HPAC deployment. Furthermore, EJB servers
were not well established at that time.

Web/HTTP. In Section 3.1 we compare rich GUIs vs Web applications with regard to the client.
A Web application would require Web application services to produce the HTML pages, which
leads to consideration of providing all HPAC services via HTTP, addressable via URLs. Note these
considerations occurred before the advent of “Web Services” based on the Simple Object Access
Protocol (SOAP), Web Services Description Language (WSDL), and Universal Description Dis-
covery and Integration (UDDI) protocols. Consequently, providing services across HTTP would
differ little from doing so at the socket level, for HTTP provides no structure for object or data
exchange. Thus, the same disadvantages hold for HTTP and socket services. The client would
be responsible for adhering to an exchange protocol and data formats (parsing and formatting)
HPAC would define and impose.

Web Services. Were the HPAC re-engineering effort to begin today, SOAP, WSDL, and UDDI,
collectively Web Services, would warrant careful consideration as an alternative to CORBA for
supporting clients independent of language and platform. However, there are several issues in
comparing Web Services to CORBA that prevent the former from being the instant choice. First
and most obvious is the level of maturity of the technologies. Web Service implementations have
appeared only within the last calendar year, compared to decades of work on CORBA.

Another consideration is performance. CORBA must translate data to language- and platform-
neutral binary formats. SOAP exchanges data as Extensible Markup Language (XML) documents,
a verbose ASCII format requiring significant parsing time.

Finally, CORBA enforces strong typing. That is, objects and the parameters to their methods
are defined in interfaces or structures in IDL. Any attempt at an incorrect use of an object will be
caught at compile time. Conversely, type mismatches with SOAP are caught at runtime rather
than compile time. There are benefits of both approaches, but with strong typing an unexpected
problem detected at runtime is less likely, an important issue for system maintainability and reli-
ability.

CORBA Alternatives. Through version 2.2, the CORBA standard imposes a limitation on inter-
action with distributed objects passed as parameters to object methods. Pass-by-value semantics
are not supported for remote objects, even when passed as an argument for an ”in” (as opposed
to ”out” or ”inout”) parameter. Instead, remote objects always have pass-by-reference semantics.
Note this is not the case for objects of defined types (e.g., structures and unions). They are passed
by value.

An object passed by reference to a server method may be manipulated in that method. Any
changes in the object’s state remain when the method returns. It is necessary that clients under-
stand this limitation.

With version 2.3 of the CORBA/IIOP (Internet Inter-Orb Protocol) specification, this problem
was addressed.32 Moreover, with the RMI over IIOP technology in Java, RMI clients can access

19

CORBA services directly, without first compiling CORBA IDL to generate the interface classes.33

This is also a compelling capability, as it allows developers of HPAC Java client components to
focus on Java remote interfaces and avoid maintenance of CORBA IDL sources.

Nonetheless, HPAC employs CORBA 2.0 for a couple of reasons. First, experiments early in
the development process with RMI over IIOP were not encouraging. Specifically, services defined
as java. rmi. Remote interfaces and compiled using tools available at that time resulted in IDL
definitions not easily implementable in a language other than Java. Since HPAC must be extensible
and allow the addition of source model implementations, defining interfaces in IDL proved more
effective. Second, forcing clients to a 2.3 compliant object request broker (ORB) was considered
too restrictive due to the unavailability of such an ORB when the new HPAC development effort
began.

3.5.2 Server Architecture Elements

Factory Pattern. Server objects registered with a naming service can be accessed by multiple
clients simultaneously, requiring the server objects to be mindful of multi-threading issues. Given
the complexity of correctly accounting for multiple threads, a single threading model for source
model servers is warranted. HPAC uses the Factory design pattern to achieve single threading for
CORBA services.

As illustrated in the collaboration diagram of Fig. 8, a singleton factory server for each incident
source model object is registered with the naming service. It provides a method, getInstance(),
which returns a per-client instance of the model server object. Each server instance exists to serve
a single client for a single session.

client
Naming Service

factory: IncidentModelServerFactory

per−client server: IncidentModelServer

1. lookup()

factory server reference

1.1 lookup()

2. getInstance()

per−client server reference

2.1 create()

3..n−1. updateIncident()

releases

n. release()

Fig. 8: Factory pattern collaborations.

20

Connectionless, Stateless Model. The duration of the connection (or session) between a client
and server across the network has a direct impact on performance and robustness. HPAC assumes
a connectionless, stateless model where the session duration is assumed to be relatively short. That
is, clients do not obtain server references and hold them between groups of calls for related activity.
Rather, a client obtains a per-client server, performs needed work, and then releases the server.
When the same services are needed again later, another server instance is obtained. Thus, clients
neither hold connections, nor do they depend upon any state that existed in the previous server
instance. This eliminates the need for clients to check the state of connections and, if necessary,
repair or reestablish them.

Although reconnecting each time a service is needed adds additional communication, this
approach has been effective due to the large latency between successive service calls from client
objects. Continual or frequent service access would call for client objects to hold onto service
references.

Model Server Abstract Base Class. As described in Section 3.3.2, HPAC makes heavy use of
abstract base classes to provide default behavior for framework interfaces. An abstract base class
implementing the IDL-defined model server interface is provided as part of the incident model
server framework. This serves several purposes. It relieves the model server implementations
from implementing the same functionality, standardizes behavior among the implementations,
and provides a level at which new requirements can be met and design revisions can be realized
without undue disruption for server developers.

IDL Structures and Interfaces. HPAC services involve several parameters of various data types
and structures that must be passed from the client to the server object. How this is designed into
the CORBA server objects has a huge bearing on performance.

One approach for passing this data is to define accessor methods for an interface by which the
client sends the parameter values. Another is to define IDL structures encapsulating the param-
eters and then pass the structures and other parameter data in methods which operate on them.
The performance implication arises from the fact that each method call involves communication
across the network from client to server. Thus, assigning structure fields on the client and then
sending all the parameter data en masse results in fewer communications. Although the amount
of data to exchange is the same, the total communication time is reduced by avoiding accessor
methods on server objects defined with IDL interfaces. By way of analogy, using structures is like
sending a fully loaded truck with all cargo as opposed to sending multiple trucks, each with a
single piece of cargo.

For example, the calculateWithUrban() method of the DispersionCalculator interface is
defined with the IDL below.

boolean
calculateWithUrban(

in IncidentTList incidents,
in AnyList model_incidents,
in WeatherT weather,
in LimitT limits,
in OptionsT options,
in FlagsT flags,
inout TemporalDomainT temporal_domain,
inout SpatialDomainT spatial_domain,

21

in float max_time_step,
in float output_interval,
in string udm_params,
in string uwm_params
)
raises (ScipuffException);

This method has 12 parameters. With one exception, all the non-primitive parameters are
defined as IDL structures. The IDL definitions for two of them are listed below. Were structures
not used at all, the DispersionCalculator interface would require setter methods for each of the
12 parameters, which would require 12 separate method calls or communications from the client
to the DispersionCalculator server once the parameter objects were populated. The OptionsT
structure defined below has 14 fields. Were it instead defined as an interface and implemented
as a server object with setter methods for each field, 14 communications would be necessary to
populate it alone. Consequently, HPAC service definitions make heavy use of IDL structures for
parameter values.

...
struct LimitT

{
long fMaxPuffs;
long fMaxGridCellsPerSurface;
long fMaxMetHorizSize;
};

...
struct OptionsT

{
long fVertGridTurbBL;
long fGridResolution;
long fSubstrateIndex;
float fTurbDiffAvgTime;
float fMinPuffMass;
float fMinAdaptiveGridSize;
float fTropVertVelVariance;
float fTropAvgDissRate;
float fTropVertScalelength;
float fCalmTurb;
float fCalmScaleLength;
float fDosageCalcHeight;
float fSamplerOutputInterval;
string fSamplerFile;
};

3.5.3 File References

When deployed in a true client-server mode, there are many files that may need to be trans-
ferred from the client host to the server host for processing by source model services and the T&D
engine. Examples include weather files, terrain and land cover files, and release files. These files
are produced or obtained by the user and stored on the client host.

Since the sizes of the files to transfer can vary greatly, a “one size fits all” approach to uploading
them to the server host is ineffective. The ultimate determining factor in the size of most files is

22

the spatial domain of the project. A global domain will result in very large files on the order of
megabytes, potentially even tens of megabytes. With a typical spatial domain, weather files such
as surface and upper profiles will have sizes on the order of tens of kilobytes.

Smaller files can be transferred by passing their contents in parameters to CORBA object meth-
ods. However, tests against the ORB provided with the J2SE (version 1.3.1) revealed that once the
size of a parameter approaches ten megabytes, CORBA failures can occur. Thus, a separate upload
mechanism is used for larger files. Specifically, files of size greater than 256 kilobytes are trans-
ferred via an explicit upload to the server host, whereas the contents of smaller files are passed in
the method parameter.

Components and objects on the client and server side should not be burdened with explicit
handling of the transfer mechanism. A file transfer mechanism transparent to all components is
described below.

File References. An IDL union, FileReferenceT is defined to encapsulate the file and the rep-
resentation of its transfer to the server host. FileReferenceT and its supporting structures are
listed below.

...
struct FileContentsT

{
string fClientPath;
sequence<octet> fContents;
}; // FileContentsT

...
struct FileServerPathT

{
string fClientPath;
string fServerPath;
}; // FileServerPathT

...
union FileReferenceT switch(long)

{
case FR_CLIENT_PATH:

string fClientPath;

case FR_CONTENTS:
FileContentsT fContents;

case FR_DEFERRED:
string fDeferred;

case FR_SERVER_PATH:
FileServerPathT fServerPath;

case FR_URL:
string fURL;

}; // FileReferenceT

A file reference can be in one of the five states specified by the union discriminators. A deferred
reference is essentially empty or unspecified. A state of client path indicates the path to the file on

23

the client host has been specified, but the file has yet to be resolved or transferred to the server.
URL is similar to client path with the file specified as a URL instead of a path on the client host.

The remaining two states represent the file reference after it has been resolved with respect to
the server. The process of resolving file references is described below. For contents, the contents
of a file originating on the client host are stored in the FileReferenceT object. A server path state
means one of two things. Either the file has been explicitly transferred or uploaded from the client
host to the server host, or the deployment is standalone, meaning the client and server hosts are
the same and thus the path to the file on the server host is made equivalent to the client path. An
additional service, the FileServer exists solely to support uploads of files during file reference
resolution.

Resolving File References on the Client. Prior to calling CORBA server object methods, a client
component must first resolve FileReferenceT objects in the client path state. A utility class, File-
ReferenceTMgr provides this and other methods for managing file references, a utility class being
necessary since FileReferenceT is defined as an IDL union. FileReferenceTMgr resolves ref-
erences by first invoking Java’s reflection mechanism to recursively search the specified object
and all its contained objects (i.e., field members) for instances of FileReferenceT. This reflec-
tive search calls the java. lang. Class. getFields()method, which processes only public field
members. Thus, all FileReferenceT objects to be resolved must be tagged with public access,
which also means all the owning objects in the hierarchy must also be public. By specifying the
access tag, the developer of a class can control whether or not a FileReferenceT member is au-
tomatically resolved by FileReferenceTMgr.

Each FileReferenceT object in the client path state is resolved in one of three ways. First, if
HPAC is running in standalone mode, the client file path is copied as the server file path, and the
state is set to server path. Second, if the file is smaller than 256 kilobytes in size, the file’s contents
are read and stored in the file reference, the state being set to contents. Finally, files larger than
256 kilobytes are uploaded to the server host via the FileServer object. The state of the reference
object is set to server path, the path of the uploaded file on the server stored in the reference.

Resolving File References on the Server. The client-resolved FileReferenceT object is passed
as a parameter (or a field in the structure hierarchy of a parameter) of a CORBA object method.
Once received by the server object, the file must be obtained according to the state of the reference.
A state of deferred is effectively a null or empty file reference and is treated as such. If the state is
server path, the file already exists on the server host, and no other action is necessary other than to
note the file’s location on the server host. A state of either contents or URL means the file must be
built, either by storing the contents passed with the reference object in the case of contents or by
retrieving and storing the contents from a URL.

3.5.4 Supporting Standalone Deployment

In the original concept for the new HPAC architecture, standalone deployment was to be sup-
ported by merely co-locating client and server components on the same host. Certainly, this works,
but CORBA’s translations to language- and platform-neutral formats, in addition to time required
to connect to network ports, requires some time, even when all communication occurs on the same
host and never sees a physical network medium. The performance decrement was enough to war-
rant a solution to expedite communication between client and server objects on a standalone host.

24

The eventual solution was possible due to the choice of the Java Naming and Directory Inter-
face (JNDI)34 for all server object registration and lookups. JNDI implementations provided by
the J2SE on top of the COSNaming service and an RMI registry are used for registering CORBA
and RMI services, respectively. For standalone mode, a JNDI implementation based on the java.
util. Hashtable class is used for CORBA and RMI server objects.

By registering server objects in a Hashtable object in the same JVM (i.e., operating system
process), client objects retrieve references to the server objects themselves instead of stubs used
for remote access. Thus, CORBA transport is bypassed and replaced with direct calls to the server
objects. The result is significantly improved performance in standalone mode.

It should be noted that one kind of server object could not be deployed in this manner, specif-
ically the CORBA wrapper for the T&D engine. Since the engine is written in non-reentrant For-
tran, each per-client instance must always live in its own JVM process.

3.5.5 Supporting Thin Client Deployment

Use of URLs for file references as described in Section 3.4.1 solves the major problem in deploy-
ing HPAC as a thin or lite client, obtaining necessary data transparently to the using components.
In this case, thin refers not only to the required capabilities of the client host but also suggests
that no pre-installation of HPAC components is necessary. Rather, all that is necessary for run-
ning HPAC as a thin client is a platform for which a J2SE implementation is available and a Web
browser.

The HPAC client GUI is a Java application, as opposed to an applet. This means it runs in a JVM
executing as a process in the operating system and not within a Web browser. Requirements call
for HPAC to be launched from a Web browser with no prior HPAC installation. Java WebStart™35

is the mechanism by which this requirement is met. WebStart uses the Java Network Launching
Protocol (JNLP) to download or update an application described in an XML document and linked
in a Web page. The WebStart launcher must first be installed on the client host, but once installed,
any application defined by a JNLP description document can be downloaded and executed on the
client host. Again, no prior installation of HPAC components is necessary.

3.6 INTEGRATION

As stated above, integration with other tools and systems is the principle (if not transcending)
goal behind the new HPAC architecture. Not only do organizations differ in their planned uses
of HPAC, but systems with which HPAC must integrate have varying architectures and means of
tool integration. In hopes of supporting all these needs, four levels of access to HPAC are provided
as illustrated in Fig. 9:

• HPACtool library,
• detailed CORBA services,
• IHPACServer, and
• reusable Java beans and components.

3.6.1 HPACtool Library

At the lowest level of HPAC access is the HPACtool API and library.36 HPACtool is a Windows
C/Fortran library for SCIPUFF, the T&D engine. It also provides plot and output generation and

25

ScipuffBean
Source Model

BeanReleaseBeanLocationBean

Incident Release ProjectLocation...

ScipuffServer
Factory

ScipuffServerSource Model
Server

Material
Server

HPACtool

Source Model
Factory

IHPACServer

...
4. Client GUI and Data Beans

3. IHPACServer

2. Detailed
CORBA
Services

1. HPACtool

CORBA call

function call

create

Fig. 9: Levels of HPAC access.

calls for effects and consequence computations, reading auxiliary data (e.g., population and land
cover) as necessary. HPACtool provides no support for incident source models, instead taking
detailed release and material descriptions as input. With the HPACtool library, organizations can
link in or tightly integrate HPAC T&D calculations with their tools.

3.6.2 Detailed CORBA Services

The next level is a set of CORBA services providing HPACtool functionality as well as incident
source model calculations, a material server, and radiological computations. Other systems may
access HPAC’s transport and dispersion calculation functionality as an object on the network in-
stead of requiring them to link in a library on a specific platform. Further, incident source models
are available to convert operational incident definitions into detailed release descriptions for input
to the T&D engine.

At this level, all the detailed parameters, flags, and options of HPACtool are exposed to client
objects. Values for all HPACtool parameters must be provided by the client in server object calls,
but this gives the client complete control over the calculation process. This is the level at which
HPAC client components access HPAC services.

26

3.6.3 IHPACServer

Another CORBA interface is provided by IHPACServer, a collection of server components
hiding many of the detailed parameters. IHPACServer objects pass default values for many pa-
rameters to detailed objects by reusing Java data beans and components built for the HPAC client
application and providing default calculation parameter values. It also makes use of the Java plot-
ting components to obtain plot data and output from the HPACtool. However, IHPACServer’s
simpler interface comes at the cost of limiting access to some detailed parameters.

Further, IHPACServer is designed to be easy for developers of client components to invoke.
Whereas detailed CORBA services make heavy use of IDL structures for optimal performance as
described in Section 3.5.2, IHPACServer is defined with IDL interfaces exclusively, and all interac-
tions are with remote objects. Clients with limited network bandwidth or performance concerns
may be forced to detailed services.

3.6.4 Reusable Java Components

Almost all components in the HPAC client application are designed to be reused, both within
HPAC and by other tools. HPAC’s assortment of data and GUI beans represent the highest level
at which other tools can access HPAC. An organization can effectively re-implement the HPAC
client GUI by assembling the beans and components into a new application. However, for other
tools to take advantage of this level of access to HPAC, they must be implemented in Java or at
least have the ability to bridge to Java components.

4 SUMMARY

HPAC has been re-engineered from a Windows application with tight binding between com-
putation and the GUI to a new distributed object architecture. The key goals of this new archi-
tecture are platform portability, extensibility, deployment flexibility, client-server operations, easy
integration with other systems, and support for a new map-based GUI.

Selection of Java as the development and runtime language and environment is the major fac-
tor in achieving each of the goals, platform portability in particular. Portability is further enforced
by allowing only Java components in the client. All native (C, C++, Fortran) code sits behind
server components.

Extensibility is achieved via Java’s dynamic binding and class loading capabilities and a de-
sign by interface approach. These techniques form the basis for building pluggable frameworks
throughout HPAC, most notably for incident source model servers and client beans and map dis-
plays. Instead of Java’s binary serialization mechanism, a framework based on Java properties
files and the java. util. Properties class is used for (de)serialization of all objects in HPAC.
The result is an easy mechanism for new implementations to be plugged into HPAC.

HPAC must support deployment on a standalone host, as a heavy client in client-server mode
with data stored on the client but calculations performed on the server host, and as a thin client
with data and calculations on the server host. The principle architectural element supporting de-
ployment flexibility is the use of URLs for all file references. This works very well for sequentially-
read files, but direct-access files must be served across the network. Large files are better handled
by processing the data in a server object and sending only necessary data to the client. A necessary
aspect of deployment flexibility is the use of runtime configuration files. Thin client deployment
is provided via the Java WebStart™ facility.

27

Although there were many choices for the object distribution mechanism, CORBA was chosen
to support HPAC client server operation. More specifically, HPAC uses version 2.0 of the CORBA
standard and does not assume support for pass-by-value method arguments, thereby making it
easier for clients to access HPAC.

Another issue in supporting client server operation is references to files stored on the client
host. They must be transferred to the server host when needed. Rather than use a single transfer
mechanism for all files regardless of size, HPAC employs a mechanism that passes the contents of
small files in method parameters, but large files are first uploaded to the server with a reference
to the uploaded file passed in a method parameter. Execution in standalone mode is expedited by
executing most server objects in the same JVM as client objects, thereby bypassing CORBA object
transport.

For integration with other tools and systems, HPAC provides four levels of access, beginning
with the HPACtool API and Windows library providing transport and dispersion calculations
as well as effects computations and output generation. However, no access to source models is
provided in HPACtool. The next level up is a set of detailed CORBA services including incident
source model servers. Detailed control over calculations is provided at this level.

An additional set of CORBA services is provided in IHPACServer. Here the detailed calcula-
tion parameters are defaulted. Although the interface is simpler, access to detailed parameters is
limited, and server objects require more network communication. Finally, the reusable Java data
and GUI components developed for the HPAC client application are available to any other appli-
cation. However, a Java environment is necessary to make use of this highest level of access to
HPAC.

References

[1] SCIPUFF Dispersion Model,
http://www.titan.com/appliedtech/Pages/TRT/pages/scipuff/scipuff.htm.

[2] R. I. Sykes, C. P. Cerasoli and D. S. Henn, “The Representation of Dynamic Flow Effects in a
Lagrangian Puff Dispersion Model”, J. Haz. Mat., 64, 223-247, 1999.

[3] R. I. Sykes and R. S. Gabruk, “A Second-Order Closure Model for the Effect of Averaging
Time on Turbulent Plume Dispersion”, J. Appl. Met., 36, 165-184, 1997.

[4] R. I. Sykes, D. S. Henn, S. F. Parker and R. S. Gabruk, “SCIPUFF - A Generalized Hazard Dis-
persion Model”, Ninth Joint Conference on the Applications of Air Pollution Meteorology
with A&WMA, American Met. Soc., 1996.

[5] DTRA Technology Development Directorate,
http://www.dtra.mil/td/td index.html.

[6] High Level Architecture Interface Specification, Version 1.3, U.S. Department of Defense,
April 1998.

[7] Integrated Target Planning Toolset, http://www.itpts.com/.

[8] Warfighter’s Simulation (WARSIM),
http://stricom.army.mil/PRODUCTS/WARSIM/.

[9] V. Maciejewski and J. Zukowski, “Developing Rich User Interfaces for Software Services”,
Spidertop Technical Report TR101, Spidertop, Inc., October 2001.

28

[10] H. Rosen, H. Muller, S. Violet, Rich Clients for Web Services, Presentation at JavaOne 2001,
June, 2001,
http://servlet.java.sun.com/javaone/conf/sessions/2734/0-sf2001.jsp,
http://java.sun.com/products/jfc/tsc/articles/javaOne2001/2734/

[11] Tim Lindholm and Frank Yellin, The Java Virtual Machine Specification Second Edition, Ad-
dison Wesley, 1999, http://java.sun.com/docs/books/vmspec/index.html.

[12] Brent Welch, Practical Programming in Tcl and Tk, Third Edition, Prentice Hall, 1999.

[13] Eric F. Johnson, Graphical Applications with Tcl and Tk, Second Edition, M&T Books, 1997.

[14] Python Website, http://www.python.org.

[15] The Fast Light Toolkit Home Page, http://www.fltk.org.

[16] “Object-Oriented Programming Concepts: A Primer”, Java Tutorial,
http://java.sun.com/docs/books/tutorial/java/concepts/index.html.

[17] Jeffrey R. Shapiro, “Sleeping with the Primitives”, NetworkWorldFusion, November 2001,
http://www.nwfusion.com/newsletters/java/2001/01123457.html.

[18] Grady Booch, Object Oriented Design with Applications, Benjamin/Cummings, 1991.

[19] The Java HotSpot Virtual Machine, Technical White Paper, Sun Microsystems Inc., Palo Alto,
California, 2001.

[20] The Java Performance Report, The JavaLobby,
http://www.javalobby.org/fr/html/frm/javalobby/features/jpr/.

[21] P. Przemyslaw and B.N. Bershad, “Dynamic Binding for an Extensible System”, Proceedings
of the Second USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Seattle, WA, pp. 201-212, October 1996.

[22] Java™ Core Reflection API and Specification,
http://java.sun.com/products/jdk/1.1/docs/guide/reflection/spec/java-
reflectionTOC.doc.html.

[23] BioJava Design Overview, http://www.biojava.org/docs/.

[24] Rob Shecter, “Design by Interface”, Dr. Dobb’s Journal, February 1999,
http://www.ddj.com/documents/s=906/ddj9902j/9902j.htm.

[25] Mark Grand, Patterns in Java Volume 1, pp. 377-383, Wiley, 1998.

[26] OpenMap™ Open Systems Mapping Technology,
http://openmap.bbn.com

[27] T. Berners-Lee, R. Fielding, L. Masinter, “Uniform Resource Identifiers (URI): Generic Syn-
tax”, RFC 2396, August 1998,
http://www.ietf.org/rfc/rfc2396.txt.

[28] TCP/IP, Webopedia, http://www.webopedia.com/TERM/T/TCP IP.html.

[29] Microsoft COM for Solaris,
http://www.microsoft.com/com/resources/solaris.asp.

[30] JavaBeans Bridge for ActiveX,
http://java.sun.com/products/javabeans/software/bridge/.

[31] Enterprise JavaBeans™ Technology,
http://java.sun.com/products/ejb/index.html.

29

[32] The Common Object Request Broker: Architecture and Specification, Revision 2.3.1, Object
Management Group, Inc., October 1999.

[33] Java™ RMI Over IIOP,
http://java.sun.com/products/rmi-iiop/index.html.

[34] Java Naming and Directory Interface (JNDI),
http://java.sun.com/products/jndi/index.html.

[35] Java WebStart™,
http://java.sun.com/products/javawebstart/.

[36] Stephen F. Parker, The HPAC Application Programming Interface HPAC Version 4.0 (Draft),
Titan Research and Technology, Titan Corp., Princeton, NJ, December 2000.

[37] A. Nguyen-Tuong, S.J. Chapin, A.S. Grimshaw, C. Viles, “Using Reflection for Flexibility and
Extensibility in a Metacomputing Environment”, University of Virginia Technical Report
CS-98-33, 1998.

30

ORNL/TM-2002/145

INTERNAL DISTRIBUTION

1. J. C. Gehin
2. R. T. Goeltz

3-7. R. W. Lee
8. R. H. Morris
9. T. E. Potok

10. J. S. Tolliver
11. B. A. Worley
12. ORNL Central Research Library
13. ORNL Laboratory Records

EXTERNAL DISTRIBUTION

13. Thomas A. Mazzola, Northrop Grumman Information Technologies,
6940 S. Kings Hwy, STE 210, Alexandria, VA 22310

14. Ronald Meris, Defense Threat Reduction Agency,
6810 Telegraph Rd, Alexandria, VA 22310

31

